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A Class of Linear Functional Equations

by

J.K. Hale

is report is a summary of some unpublished results of
K. Meyer, C. Perelld and the author concerning a class of autonomous
linear functional equations which includes as special cases autonomous
linear functional differential equations of retarded and neutral type
as well as functional difference egquations.

Let R" be a real or complex n-dimensional linear vector
space of column vectors with norm || and let Cr([-r,o],Rn) be
the Bénach space of continuous functions mapping [-r,0] into R® with
the norm ”@Hr for @ in C_ defined by H@Hr = max {|9p(8)|, 6 in
[-r,0}}. 1If g, £ are continuous linear mappings of Cr into Rn,
then there exist n X n matrices u,n whose elements are of bounded

variation on [-r,0] such that

g(o)

[ Lan(e)Ie(e)
(1)

(o]
£(e) = [ [dn(6)le(e)

r

for 211 ¢ in Cr' We shall suppose that the measure p is nonatomic

at O and more specifically that there is a continuous nondecreasing



function &(s), O £ s £ r, such that &(0) = O and

(2) |1 ten(@) (o) = o(o)sl

-8

for all ® in Cr'
For any @ in CI” define Y(CP) = CP(O)-g(Q)). For any con-

tinuous function h mapping [O,») into R"  and any fixed element

® in Cr’ consider the functional integral equation

x(t) =o(t) , -r=t=0,

(3)
t

t
x(t) = v(®)+a(x.) + [ £(x)ds + [ n(s)ds , t 20,
o o
where, for each fixed t z 0, x, 1is in C_  and is defined by xt(e) =
= x(t+68) , -r £ 6 £ 0. By a solution of (3), we will always mean a
continuous function satisfying the above relation,
For g = 0, equation (3) is equivalent to the functional

differential equation of retarded type

(%) x(t) = £(x,) + B(t)

with the initial condition at t =0 given by ®¢. If f=0 and h =0,

equation (3) is a functional difference equation of retarded type and,




in particular, includes difference equations. For both f and g not
identically zero, equation (3) corresponds to a retarded equation of

neutral type. In fact, formal differentiation of the equation yields

LA \ ~l8 N\ . af
(5) A(t) = é(ﬁt/ + 1(X

where X = 1is defined as X (0) = %(t+8), -r = 6 = 0. Also, if one
begins with (5) and defines a solution with initial function ¢ at O
to be a continuous function satisfying (5) almost everywhere, then an
‘integration yields (3) with 1(9) = ¢(0)-g(®).

This latter remark is precisely the reason for considering
the equation (3) rather than (5). If one attempts to discuss equation
- (5) directly, then the first problem that is encountered is a precise
definition of a solution and a precise definition of the topology to
be induced on the space in which the solution will lie. Such a topology
will necessarily include the first derivative of x in some way;
whereas, if we consider equation (3), the simpler space C. can be
employed.

If h in (3) is ideptically zero, we will say equation (3)

is homogeneous and, otherwise, it is nonhomogeneous.

THEOREM 1. For any given ¢ in C_, there is a unigue function x(o)

defined and continuous on [-r,») such that =x(@) satisfies (3) on




[0,). Furthermore, there is a constant B >0 such that

t

(6) (@)l 5 < tloll + J [n()las , ¢ = o.

This theorem is proved by using the nonatomic property of
L at O +together with the contraction mapping principle to first
show that (3) has a solution on a small interval to the right of
t = 0. An application of a result on the continuation of the solution
then allows one to obtain the estimate (6) for t 2 O.

If h is identically zero and x = x(®) 1is a solution of

the homogeneous equation

t
x(t) = M) + &lxy) + [ £(x)ds , 20,
[0}

then it follows from the uniqueness of the solution that xt(@) is a
continuous linear mapping of Cr into Cr for each fixed t 2 O,
and xt(¢) satisfies the semigroup property. If we define the linear

operator T(t) by

(8) x,(0) EF T(t)e , tzoO,




then we can prove

THEOREM 2. The family of linear operators {T(t), t = 0} mapping C.
into C, is a strongly continuous semigroup on [0,w) with T(0) = I.

If, in addition the function &(s) in (2) satisfies 1lim Oﬁ(s)/s =0

5 = ’

then the infinitesimal generator A of T(t) is given by

(ap)(6) = $(6) , -rse6<0,

g®) + £(@) , 6=0

and the domain of A, Z(A) consists of all functions ¢ in C, with
a continuous first derivative and ¢(0) = g(®) + £(®).

It is interesting to note that if ¢ is in ZX(A), then T(t)P
is actually a continuously differentiable solution of the functional
differential equation (5) with h = O.

It is easy to show that the spectrum of A, U(A), consists of
only point spectrum and that A is in o(A) if and only if A satisfies

the characteristic equation

(9) det AA) =0 , AA) =M - foxe"edu(e) - foewdn(e) .
- -r

Also, because A is a closed operator and a root Xo of (8) has finite

multiplicity, one can show that the resolvent operator (A-A.I)_l has



a pole of finite order at Xo and, thus, the generalized eigenspace of

), has finite dimension. If N(A) and H(A) denote, respectively,
the null space and range of an operator A and the generalized eigen-

space of M is given by 9?(A-kol)k, then it can be shown that the

space C_  1s decomposed as a direct sum of the subspaces P def ER(A—XOI)k,
Q de~9?(A_x01)k each of which is invariant under both A and T(%),

t 2 0. When Cr is decomposed in this way, we shall say Cr is
decomposed by xo as Cr =P & Q and write any element ® din C

© of in P, oY% in Q. If © is a basis for P,

r
as @ = $P + 0
then there is a matric B such that A® = OB and, thus, &(0) = @(O)eBQ,

B(t+6)

-r £ 6 £0. Also, one easily shows that T(t)®(6) = @(0)e -r £6 =0

b
which implies that the solutions of (3) on the generalized eigenspace
of a solution of (9) can be defined on (-»,o) and that the action of
the semigroup T(t) on this subspace is essentially the same as an
ordinary differential equation. The decomposition outlined here plays
the same role as the Jordan canonical form in ordinary differential
equations.
In the applications, it is necessary to have an explicit

representation for the projection operator E, associated with the
o]

above decomposition. This can be obtained from the formula

1 -1
E)Vocp = 59 fc(A-xI) Ppdr

where ¢ 1is a circle in the complex plane which contains no point in
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o(A) except xo. As in the case of retarded functional differential

equations (see [1] or [2]) +the projection operator E, can also be
o

obtained in the following way. Let Rn' be the n-dimensional real or
complex space of row vectors and define the operator A* with

2 (a*) CZC([O,r],Rn) given by all V¢ in C([O,r],Rn) which are con-

o o)
tinucusly differentisble with W(0) = [ ¥(-68)au(6) - [ ¥(-6)dn(6) and
-1 -
for ¥ in (A%)
(Axy)(s) = -&(S) for 0<s=sr,

[ H-0)u0) + I W(-0)an(o)- for s = o.

r ~r

- n
For any V in C([O,r],Rn'), ¥ continuous, and any ¢ in C([-r,0],R ),

define

0 ¢ o6
(1,0) = W0I(0) - | T g5 [ Ws-Dau(o)p(s)as) - [ | w(s-0)an(o)o(s)as,
-T o —

(=6 -r o

For Vv in 2(A¥), ¢ in D)(A), if follows that (V,Ap) = (Ax),9). To

obtain the projection operator Ex , one proceeds as follows: if we let
o

o = (q:l,...cpp) be a basis for the generalized eigenspace P = SR(A-A.OI)k
of A  and let Y= col(wl,...,Wr) be a basis for 9}(A*-x01)k, then

E, 9= o(¥,p) for all ¢ in C([-r,O],Rn).
o

Another important relation in ordinary differential equations

is the variation of constants formula. By using the fact the solution



x*(t,h) of (3) with © = O is a continuous linear mapping of
¢([0,t],R") into R" and the Reisz representation theorem, it

follows that

%
x*¥(t,£) = [ [d_W(t,s)In(s)

o
where W(t,t) = 0, W(t,s) is of bounded variation in s for s in
[0,t] and W(t,s) is continuous from the right in s for s in
(0O,t). One can also show that W(t,s) 1is continuous from the right
at s =0, W(t,s) = W(t-s,0) and -W(t,0) is the matrix solution

of (3) with ©® =0 and f equal to the identity matrix., Because

equation (3) is linear, it follows that the solution x = x(9) satisfies

t
x(t) = [2(t)®](0) + [ [a_V(t-s)In(s)
(o]

where we have defined V(t) = W(t,0). Using the fact that V(t) = 0
for -r =t £ 0, we also obtain

t
x,(0) = [2()01(6) + [ a v, (6)1e(s) , x=0s0,

which can be written more compactly as

t

(10) X, = T(t)p + [ [dSVt_S]h(s) .
(o]




Equation (10) is called the variation of constants formula for (3).

If A, 1is a solution of (8) and C is decomposed by Ay

as P & Q, then it can also be shown that

t

“f - Yok + IO[dSViLs]h(s) ;
Q Q. (% .Q
xg = T(t)p™ + fo[dsV£_s]h(s) .

If g is identically zero in (3), then we have seen that equation (3)
is equivalent to (4) and the variation of constants formula (10) can
be written as

t

= T(t)o + [ T(t-s)Kof(s)ds

Xt

where T(t)Kb is the solution of (4) with initial value at 0O given

by Ko(e) =0 for -r£6<0, Kb(o) = I, the identity matrix., This

is the standard manner of writing the variation of constants formula

for (4) as given in [3] and [4]. For the equation of neutral type;

i.e., f,g not identically zero, this formula also coincides with the

one given for some special cases in [3].

To apply these results in special applications, it is necessary
Q

to obtain precise estimates of T(t)¢Q and Vf. We are in the process

of obtaining these estimates by using the general representation theorems



10
for a semigroup in terms of the inverse Laplace transform of the

resolvent of the infinitesimal generator. An easier way would be to

prove that

ta(A)
a(T(t)) = e + {0},
a fact which seems to be true for the particular A given above,
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